Combinatorics

Mid-Term Examination

Instructions: All questions carry equal marks.

1. Define $Combinatorial\ Geometry\$ and rank of a flat in a combinatorial geometry. Prove that a flat E covers a flat F if and only if

$$rank(E) = rank(F) + 1.$$

- 2. State and prove the semi-modular law in combinatorial geometry.
- 3. State Paasch Axiom. Let V be an n-dimensional vector space over a finite field \mathbb{F}_q . Prove that the incidence structure whose points are k-dimensional subspaces of V and lines are k+1-dimensional subspaces of V satisfy the Paasch Axiom.
- 4. Define a $t (v, k, \lambda)$ design. Prove that any such design is also a $i (v, k, \lambda')$ design for all $0 \le i \le t$ by computing the value of λ' .
- 5. Prove that in any non-trivial Steiner system S(t, v, k), we must have

$$v \ge (t+1)(k+1-t).$$